Advanced Manufacturing
Manufacturing-related research is a major national focus that seeks to make the USA globally competitive in product manufacturing. Primary ways to achieve these goals are new technologies and higher degrees of automation. Under the leadership of Governor’s Chair and Professor Suresh Babu, MABE seeks to become a leader in advanced manufacturing. Research activities are presently focused on additive manufacturing (3D printing), traditional subtractive manufacturing, material characterization, and intelligent closed loop control of basic manufacturing processes. New methods and tools to minimize production wastes, energy consumption, and environmental impact are being studied.
Fiber and Composites Manufacturing Facility
The Fibers and Composites Manufacturing Facility (FCMF) at University of Tennessee at Knoxville focuses on comprehensive R&D to prototyping of advanced fiber reinforced plastics and composites. The core competency of the FCMF is in product and process development, characterization, modeling & simulation, nondestructive evaluation of advanced thermoset and thermoplastic composites. About 20 undergraduate and 15 graduate students work at the FCMF and gain experience in composites technologies. The team collaborates with industry for problem solving, testing and product development. Representative processes and technologies include- injection molding, multi-material sheet molding compound, extrusion-compression of long fibers, vacuum infusion, pelletizing, roll forming, sheet forming, composite recycling, low cost carbon fiber technologies etc. FCMF has seamless collaboration with Oak Ridge National Laboratory and the Institute for Advanced Composites Manufacturing Innovation (IACMI). FCMF offers training for STEM and continuing education for the industry. For additional information, please contact UT/ORNL Governor’s Chair in Advanced Composites Manufacturing and FCMF Director Uday Vaidya.
Visit the FCMF website.
Robotics and Automation
MABE has a long track record in various aspects robotics and automation from remote operations in hazardous environments to brick manufacturing automation. Telerobotic systems that merge teleoperations and robotic operations have been studied for nuclear, space, and undersea application domains. Recent work has focused on human interactions and cognition concepts that enhance performance. Research in biorobotics is also significant, including a unique robotic fluoroscope that allows the skeletal joints of human subjects to be studied in vivo during normal walking and maneuvers. Lab: Robotics, Engineering, Applied Continuum Mechanics, and Healthcare (REACH) Laboratory, DO 305
Advanced Laser Diagnostics Laboratory
Research is focused on developing new insights on aerospace science for propulsion, alternative energy, and more. One specific strength is developing and utilizing novel optical and laser diagnostic techniques of Radar REMPI and PLIF etc., to quantify key rate-controlling reactions in aeropropulsion. We have quantitatively measure methyl radicals and other minor species in the atmospheric flames. Another focus area is novel nanoenergetics materials. We have discovered active photothermal effects of various nanoenergetics materials. Flash light activated motion and ignitions of “dry” and “wet” nanoenergetics have been investigated both experimentally and computationally. Visit the Combustion and Laser Diagnostics website. Lab: DO M002
Electrochemical Energy Storage and Conversion
EESCL is internationally recognized as a leading laboratory for the study of electrochemical power conversion and storage systems. The mission of the laboratory is to develop experimental diagnostics and modeling tools to help fundamentally characterize and optimize electrochemical power storage and conversion systems. Major thrust areas for the lab include polymer electrolyte fuel cells and flow battery systems with some additional work on microbial energy systems and electrochemical sensors. Research sponsorship has come from a wide variety of sources, including dozens of industrial and government sources. Our lab alumni now work as professors, in national labs, and industry. Visit the Electrochemical Energy Storage and Conversion Laboratory website. Lab: DO M003